Outer Measure on MV-algebras
نویسنده
چکیده
In this paper we study an outer measure on MV -algebras. In Section 1 the definition of MV -algebra and Mundici theorem are remind. In Section 2 there is defined an outer measure, measurable elements and there is proved Choquet lema for this structure. In conclusion some properties of measurable elements are resumed.
منابع مشابه
New Results on Ideals in $MV$-algebras
In the present paper, by considering the notion of ideals in $MV$-algebras, we study some kinds of ideals in $MV$-algebras and obtain some results on them. For example, we present definition of ultra ideal in $MV$-algebras, and we get some results on it. In fact, by definition of ultra ideals, we present new conditions to have prime ideals, positive implicative ideals and maximal ideals in $MV$...
متن کاملA new approach to characterization of MV-algebras
By considering the notion of MV-algebras, we recall some results on enumeration of MV-algebras and wecarry out a study on characterization of MV-algebras of orders $2$, $3$, $4$, $5$, $6$ and $7$. We obtain that there is one non-isomorphic MV-algebra of orders $2$, $3$, $5$ and $7$ and two non-isomorphic MV-algebras of orders $4$ and $6$.
متن کاملEffect algebras with state operator
Effect algebras have been introduced by Foulis and Bennett [2] (see also [3, 4] for equivalent definitions) for modeling unsharp measurements in quantum mechanical systems [5]. They are a generalization of many structures which arise in the axiomatization of quantum mechanics (Hilbert space effects [7]), noncommutative measure theory and probability (orthomodular lattices and posets, [6]), fuzz...
متن کاملOn some classes of expansions of ideals in $MV$-algebras
In this paper, we introduce the notions of expansion of ideals in $MV$-algebras, $ (tau,sigma)- $primary, $ (tau,sigma)$-obstinate and $ (tau,sigma)$-Boolean in $ MV- $algebras. We investigate the relations of them. For example, we show that every $ (tau,sigma)$-obstinate ideal of an $ MV-$ algebra is $ (tau,sigma)$-primary and $ (tau,sigma)$-Boolean. In particular, we define an expansion $ ...
متن کامل$(odot, oplus)$-Derivations and $(ominus, odot)$-Derivations on $MV$-algebras
In this paper, we introduce the notions of $(odot, oplus)$-derivations and $(ominus, odot)$-derivations for $MV$-algebras and discuss some related results. We study the connection between these derivations on an $MV$-algebra $A$ and the derivations on its boolean center. We characterize the isotone $(odot, oplus)$-derivations and prove that $(ominus, odot)$-derivations are isotone. Finally we d...
متن کامل